
GE Hitachi advanced BWRs – key feature and market status

Central and Eastern European Nuclear Power Warsaw, Poland 21-22 October 2014

David Powell Vice President, Europe region Nuclear Power Plant Sales

Who we are...

GE Hitachi Nuclear Alliance

Leading global BWR nuclear provider

Two strong global parent companies

GE in Europe

- Operating here for over 100 years
- 90,000+ employees
- Annual revenues of ~€18B
 (~20% of GE's global revenue
 - (~20% of GE's global revenue)

General Electric

- Operating in >100 countries
- 125+ year legacy
- >300,000 employees worldwide
- 2013 global revenue €107B

<u>Hitachi</u>

- 100+ year history
- >360,000 employees worldwide
- 2013 global revenue ~ €69B

Hitachi in Europe

- Operating here since 1982
- ~10,000 consolidated employees
- Annual revenues of ~€5.8B
 - (~7% of Hitachi's global revenue)

Combined

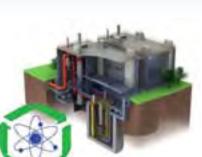
- More than 225 years of company history
- More than 660,000 employees globally and 100,000 in Europe
- ~€175B in revenue globally and ~€24B in Europe

GE Hitachi's new reactor portfolio

light water

ABWR

ESBWR


Operational Gen III technology

- Lowest core damage frequency of any Generation III reactor
- Extensive operational experience since 1996
- Licensed in US, Taiwan, and Japan

Evolutionary Gen III+ technology

- Lowest core damage frequency of any Generation III+ reactor
- Passive cooling for >7 days without AC power or operator action
- Lowest projected operations, maintenance & staffing costs¹
- 25% fewer pumps, valves & motors than active safety nuclear plants

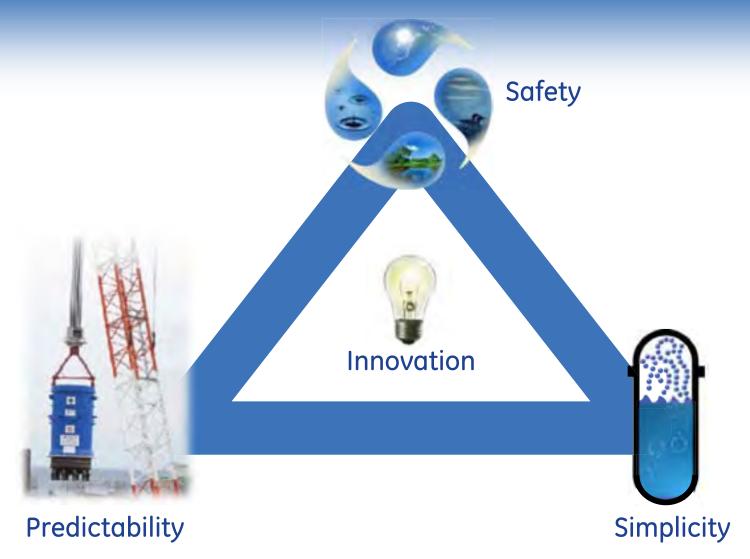
sodium cooled

PRISM

2x311 MWe

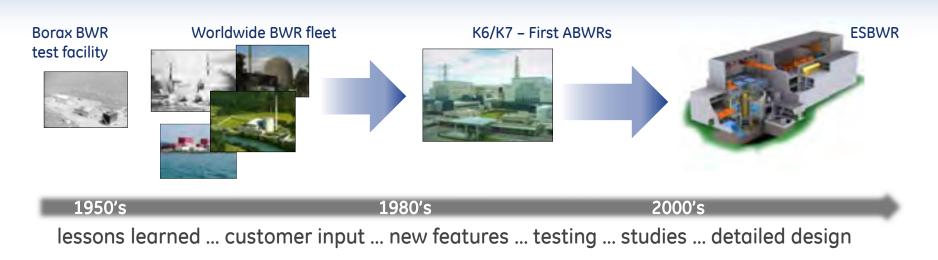
Revolutionary Gen IV technology

- 40 years of development history
- Passive air-cooling with no operator or mechanical actions needed
- The answer to the used fuel dilemma
- nuclear waste reduced to ~300year radiotoxicity² while providing new electricity generation
- Also a solution for Pu disposition



¹ Claims based on the U.S. DOE commissioned 'Study of Construction Technologies and Schedules, O&M Staffing and Cost, and Decommissioning Costs and Funding Requirements for Advanced Reactor Designs' and an ESBWR staffing study performed by a leading independent firm

² To reach the same level of radiotoxicity as natural uranium

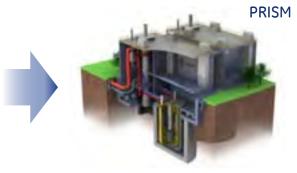

Delivering new nuclear build

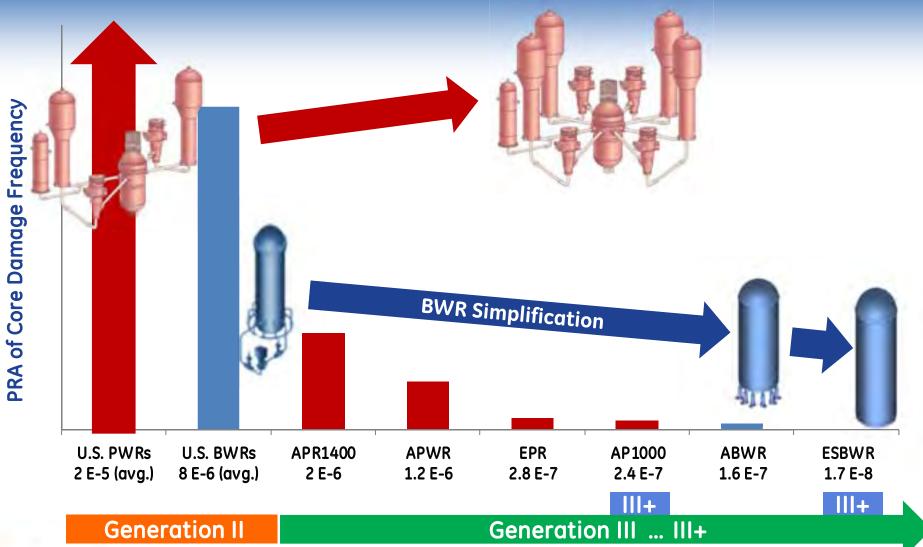
The future of our industry

GE Hitachi new nuclear plant development

EBR

US sodium reactor experience


EBR-II


SEFOR, Fermi I, Seawolf, FFTF

Simplicity increases safety

References: Plant licensing DCDs and publically available information Note: PRA of CDF is represented in at-power internal events (per year) Note: NSSS diagrams are for visualization purposes only

Simplicity reduces equipment and maintenance

ESBWR

Everything in <u>one</u> vessel

Extra components impact:

- Manufacturing
- Installation
- 0&M
- Decommissioning

- ESBWR doesn't require: steam generators, pressurizer, reactor coolant pumps, primary loop piping
- PWR heat exchange surfaces (steam generators) wear out over
 20-30 years ... 1/3 of ESBWR's heat exchange surfaces (fuel) are replaced every outage (~2 years)

Predictability - Successful ABWR project delivery

Kashiwazaki-Kariwa 6/7 ABWR

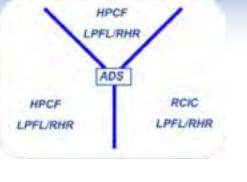
COD 1996/1997

Hamaoka-5 ABWR

COD 2005

Shika-2 ABWR

First-of-a-kind units built on-time and on-budget!


Images copyright TEPCO, Hokuriku Electric Power, Chugoku Electric Power, and J-Power; Provided by Hitachi GE Nuclear Energy

Advanced Boiling Water Reactor

ABWR station blackout prevention and mitigation

3 x 100% nominal safety divisions

Emergency Diesel Generators

- 3 located in Reactor Building
- Each has a 7-day fuel tank that is buried in a concrete vault outside the Reactor Building

Combustion Turbine Generator

 Air-cooled – Service Water not needed

AC Independent Water Addition (ACIWA) System

Hard-piped connections to reactor

ABWR project experience

Operational

Kashiwazaki-Kariwa 6 COD 1996 Kashiwazaki-Kariwa 7 COD 1997

Hamaoka-5 **COD 2005**

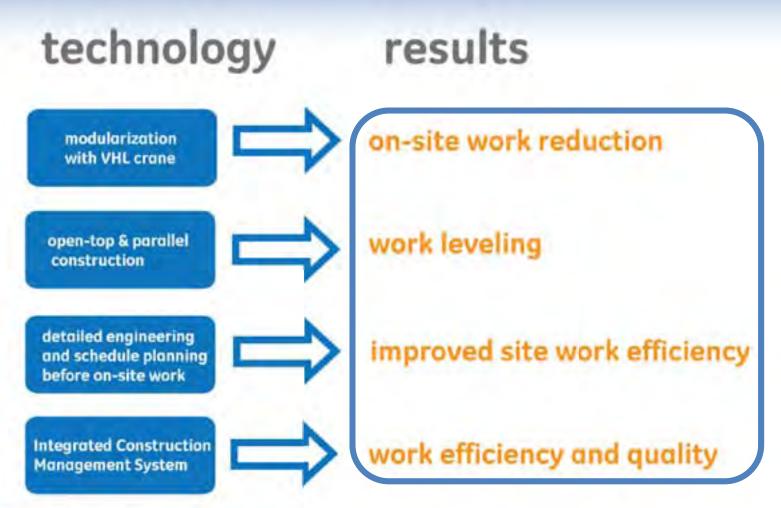
Shika-2 COD 2006

Under Construction

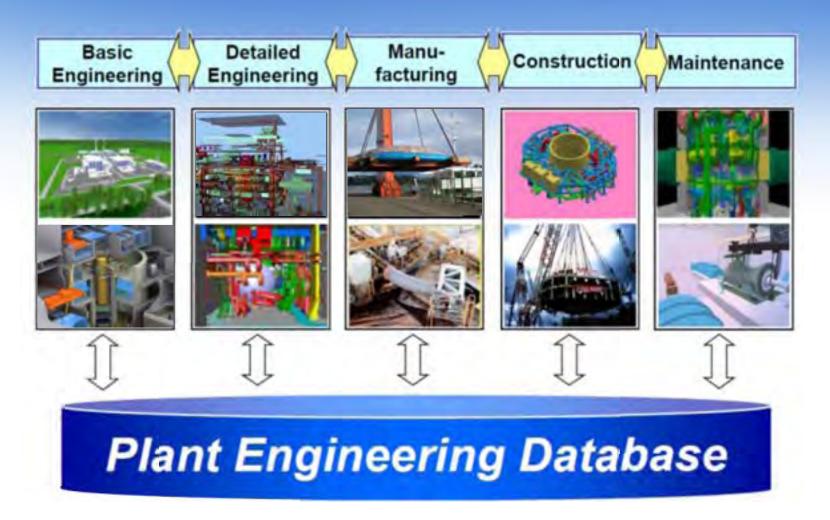
Ohma 1 38% complete

Shimane 3 94% complete

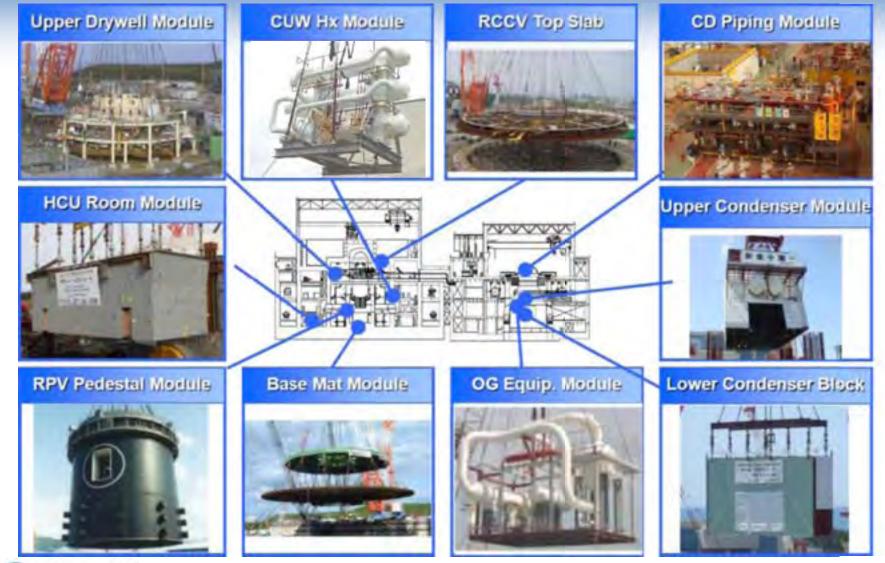
Lungmen 1&2 94% complete **Pre-op testing**


The only Gen III Reactor with operating experience ... +25 years

HITACHI

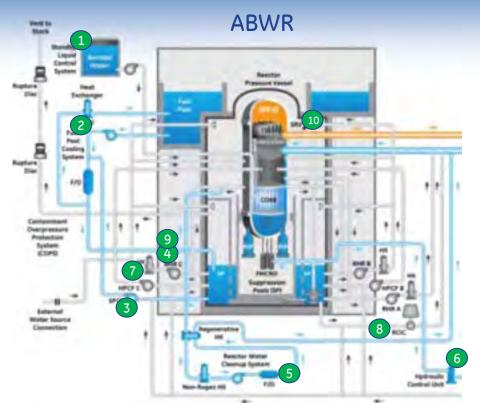

Images copyright TEPCO, Hokuriku Electric Power, Chugoku Electric Power, and J-Power; Provided by Hitachi GE Nuclear Energy Copyright 2014 GE Hitachi Nuclear Energy International, LLC - All rights reserved

Efficient, repeatable execution model

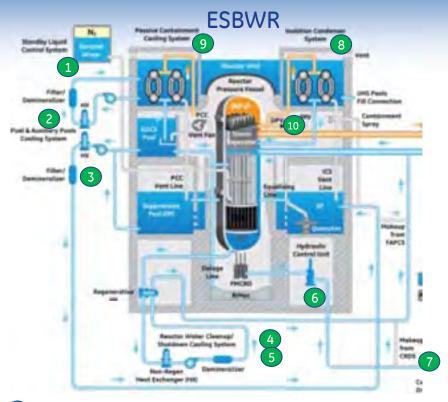


Pulling it all together with technology

Modularisation On-site work reduction and improved quality


HITACHI

Economic Simplified Boiling Water Reactor

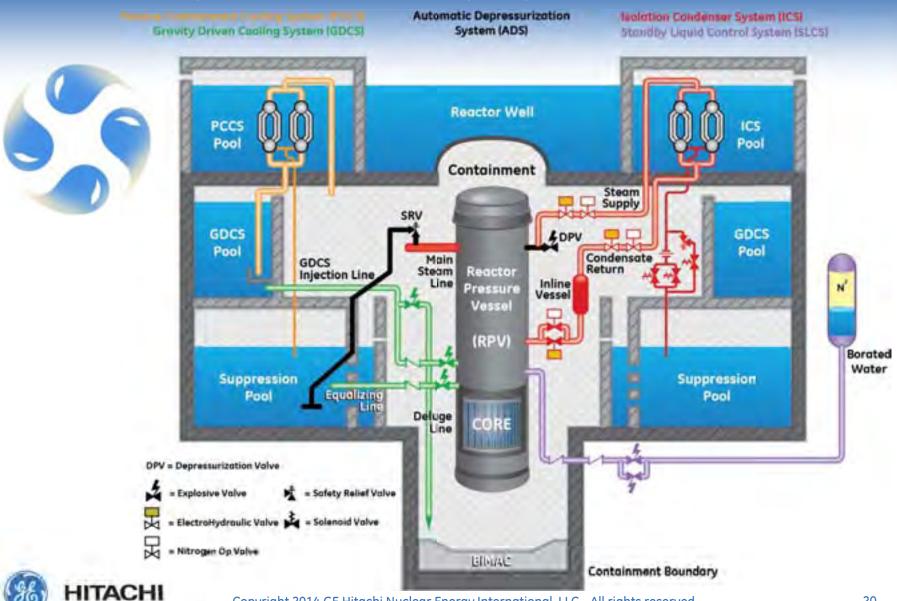

ESBWR

ABWR to ESBWR evolution

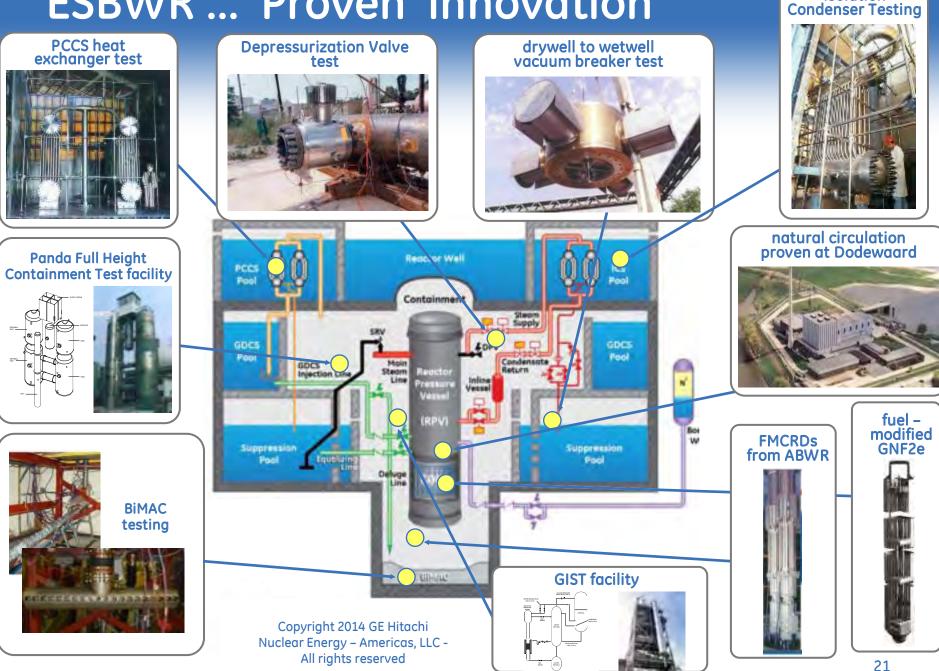
- Standby Liquid Control System **simplified** design
- Fuel and Aux Pool Cooling **equivalent** designs
- Suppression Pool Cooling & Cleanup System **equivalent** capability
- Residual Heat Removal System **equivalent** for shutdown cooling
- Reactor Water Cleanup System **equivalent** designs
- Hydraulic Control Unit **equivalent** design

- 7 High Pressure Core Flooder replaced by HP CRD makeup
- 8 Reactor Core Isolation Cooling replaced by Isolation Condenser
- 9 Residual Heat Removal Containment Spray replaced by PCCS
- 10 Safety Relief Valves Diversified with Depressurization Valves

Systems are equivalent or simplified


2

3


5

HITACHI

ESBWR passive safety systems

ESBWR ... 'Proven' innovation

Isolation

ESBWR design certified

- NRC approval of ESBWR design September 16, 2014
 - Issued Supplemental Safety Evaluation Report/NUREG-1966, Supplement 1
 - Will publish 10CFR52 Appendix E to Federal Register within 30 days
 - Dominion (Virginia) and DTE Energy (Michigan) combined construction and operating license applications (COLAs) reference ESBWR design certification

Developing Nuclear in Poland and UK

GE & Poland - Growth in Partnership

GE presence 2014: Investor, citizen

Since 1992

Engineering Design Center (EDC)

Established in 2000, currently: 1600+ engineers Partnership between GE and Institute of Aviation Work on technologies and products for:

- GE Aviation: Aircraft Engines, Aviation Systems
- GE Oil & Gas: Drilling & Production (Sub Sea), Turbomachinery
- GE Power & Water: Thermal, Aero

GE Aviation plants (2)

Avio Poland – Bielsko-Biała 2013 acquisition, 400 people Turbine components R&D and manufacturing facility UEC Poland – Dzierżoniów 2007 acquisition, 200 employees Specializes in machining and fabrication of small to medium sized engine components and assemblies

GE Capital group – BPH Bank

GE Capital group present in Poland since 1995 BPH Bank joined the group in 2008 One of the best brands in banking sector, currently 5500 employees

10.000 employees in 2014

<u>Headquarters</u>		Technology centers
Bank BPH S.A (GE Capi (Warsaw, Gdansk, Cracow)	tal group)	Engineering Design Center (Aviation, Energy, O&G)
GE GG&O	(Gdansk)	(Warsaw)
(Warsaw)		GE Healthcare IT Center
Sales offices		Katowice
GE Lighting	05.00	<u>Plants</u>
GE Healthcare	GE GG	Aviation
GE Wind	(Warsav (Lodz)	(Dzierzoniow,
GE Aviation	Dzierzoniow)	Bielsko-Blała)
(Warsaw)	•	GE Industrial
GE Energy	(Klodzko) (Katowice) (Cracow)	(Klodzko,
(Warsaw, Katowice)	(Bielsko-Biala)	eszow) Lodz,
GE Oil&Gas Sourcing	(DIEISKO-BIOIO)	Bielsko-Biala)
(Rzeszow)		

GE Industrial plants (3)

3 locations: Kłodzko, Bielsko-Biała, Łódź Present in Poland since 1996, 2000 employees This triangle of facilities cooperate closely to manufacture a

wide range of components and end products like circuit breakers load break switches, contactors and control and signal units, all utilized both by the industry and in our daily life

Identifying potential project partners

Polish Memorandums of Understanding

- Manufacturing
 - Energomontaz Polnoc
 - Polish former shipyards
 - Rafako
- Engineering
 - EnergoProjekt Warszawa
 - National Center for Nuclear Research (NCBJ)
 - SNC Lavalin Poland

Providing

- Supplier conferences
- Supplier training
- Quality requirements
- Expected needs of the project

ENERGOPROJEKT-WARSZAWA SA

Developing Poland's nuclear knowledge base

GEH and Poland's technical universities

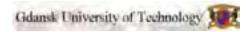
- MOUs signed with
 - Gdansk Technical University
 West Pomeranian Technical University

• Warsaw University of

Technology

- Koszalin Technical University
 AGH Technical University
- Szczecin Technical University
 Warsaw University of Technology
- Technology lectures held with
 - Gdansk Technical University
 Szczecin Technical University
 - AGH Technical University
 - Koszalin Technical University
- Donations of several licenses of Gate Cycle®,
 - Warsaw University of Technology and
 - Gdansk Technical University
- 1,600+ engineers at GE's Warsaw Design Center
- Hosted 29 Polish university interns in Wilmington, NC
- Hosting three engineers from NCJB and WUT ... training on boiling water reactor codes and methods

Copyright 2014 GE Hitachi Nuclear Energy International, LLC - All rights reserved


Zachodniopomorski

Uniwersytet Technologiczny

Szczecinie

Significant Presence in the UK

GE has been in the UK since the 1930s

18,000 employed

25 manufacturing sites

£12bn invested since 2002

GE's largest single presence outside US

Installed technology meets 18% UK electricity needs

Automated 80% UK transmission / distribution networks

Largest sponsor of London Olympics

Environmental

Parts and repair

services.

services

Drilling production land, offshore, subseq

 LNG and pipelines Refining/petroche mical

 Industrial power gen

 Complete lifecycle services

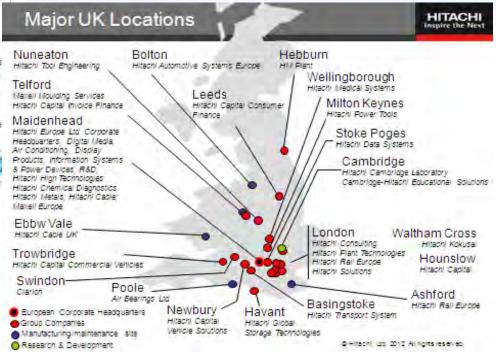
Convirant 2011 GE Hitson Nuclear Sharpy Americas LLC All norths restarved.

000

Over 3,000 Hitachi employees in over 20 locations in the UK

Nuclear

Gasification


chemicals

Water treatment

and process

Over 18,000 GE employees with 25 manufacturing sites in the UK

ABWR Deployment in the UK

Horizon Nuclear Power, Ltd. 100% owned by Hitachi, Ltd. (Nov. 2012)

- New Wylfa site
 - Location: Anglesey, Wales
 - Adjacent to site w/2 Magnox reactors
 - Two planned ABWR units

Oldbury site

- Location: South Gloucestershine
- Adjacent to site w/2 Magnox reactors
- Two planned ABWR units

- Generic Design Assessment process started in April 2013 Step 2 completed and Step 3 underway since September 2014.
- GE Hitachi supporting Hitachi GE's Front-End Engineering and Design.
- ABWR Justification submitted to DECC and consultation completed.
- 2 Supply Chain events held and further planned.

HITACHI

PRISM development for UK plutonium

- PRISM currently being considered in the UK for plutonium reuse.
- •UK government policy to re-use plutonium and looking for alternative solutions to provide better value.
- PRISM the technology that "ticks all the boxes".
- PRISM declared a "credible option" by the NDA and work proceeding.
- Potential to extend PRISM to close the fuel cycle - reduce used nuclear fuel to ~300-year radiotoxicity¹ while generating electricity.

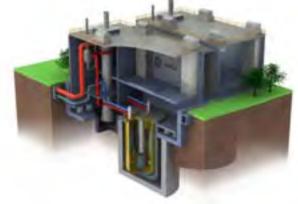
¹ To reach the same radiotoxicity as natural uranium

Copyright 2011 GE Hitachi Nuclear Energy - All rights reserved

An important strategic decision for the UK

The reuse of the UK's plutonium stockpile sets a long-term nuclear direction...

PRISM provides the UK:


- the ability to fulfill its long-term management of plutonium with a solution that provides value.
- an option to close the fuel cycle.
- a world technical leadership position and a new future for West Cumbria

"The last generation to talk about solving the back end, or the first to do it?"

Conclusions

Copyright 2011 GE Hitachi Nuclear Energy Americas LLC All rights reserved

Leading nuclear innovation for 60 years and beyond ...

Vallecitos - 1957

Oyster Creek BWR/2

Cofrentes BWR/6

North Anna-3 ESBWR

Dresden-1 BWR/1

Humboldt Bay natural circulation

KK6/KK7 ABWR

PRISM

.... And set to continue in the future

- Exciting times for nuclear now and in the future.
- Industry is well placed to meet future requirements.
- The future is advanced technology based on safety, simplicity and predictability.

Copyright 2011 GE Hitachi Nuclear Energy Americas LLC All rights reserved

Thank You